

 Widget Gallery

 	Layout	Containers
	HTML Templates
	Text
	Grouping widgets
	Layout managers
	Dialogs
	Images
	CSS
	Themes

	Forms	Introduction
	Line/Text editor
	Check boxes
	Radio buttons
	Combo box
	Selection box
	Autocomplete
	Date & Time entry
	In-place edit
	Slider
	Progress bar
	File upload
	Push button
	Validation
	Integration example

	Navigation	Internal paths
	Anchor
	Stacked widget
	Menu
	Tab widget
	Navigation bar
	Popup menu
	Split button
	Toolbar

	Trees & Tables	Tables
	Trees
	Tree Tables
	MVC Table Views
	MVC Tree Views
	MVC Item models

	Graphics & Charts	2D painting
	Paintbrush
	Category chart
	Scatter plot
	Axis slider widget
	Pie chart
	Leaflet maps
	Google maps
	3D painting
	3D numerical chart
	3D category chart

	Media	WMediaPlayer
	WSound
	WAudio
	WVideo
	WFlashObject
	Resources
	PDF output

 Show menu

 Containers

 The primary method for combining a number of widgets in a composite
 widget is a WContainerWidget. This widget corresponds to an
 HTML or <div> element (depending on
 whether it is inline or not). It can contain any number of children, and
 these children may be added or removed dynamically.

 Example
 A first widgetText 0

Text 1

Text 2

 source
#include <Wt/WContainerWidget.h>
#include <Wt/WText.h>

auto container = std::make_unique<Wt::WContainerWidget>();

container->addNew<Wt::WText>("A first widget");

for (unsigned int i = 0; i < 3; ++i) {
 // A widget can be added to a container by using addWidget()
 container->addNew<Wt::WText>(Wt::WString("<p>Text {1}</p>").arg(i));
}

 Alternatives to consider are a WTemplate, which puts widgets
 inside an HTML fragment using placeholder substitution, or a WTable for organizing children
 in a table (without using a layout manager).

 The container takes ownership of its children: when the parent
 is deleted, the children will be deleted as well. This does not
 stop you from deleting a child widget, as this also automatically
 removes it from the parent.

 As a fundamental building block of Wt, a container widget itself
 usually does not have any visual aspect (although it can very
 well be styled to give it for example margin and borders). The
 widgets that are contained can be positioned using Cascading StyleSheets (CSS) or a Layout Manager. CSS, which
 to most C++ developers will be a new technology, is worthwhile
 learning as it will allow you to push many layout and style
 aspects of your application into a declarative text file. It
 also works irrespective of JavaScript, which is a clear benefit
 over layout managers. The latter are however the superior (and
 only) choice in case vertical fitting or stretching of children
 to the height of the container is needed.

 There are several specialized container classes that have
 additional markup or behaviour:

	WGroupBox adds a title and
 a frame

	WPanel adds
 a title and a collapsible frame
	WAnchor links to a URL

	WStackedWidget displays
 only one of its children at a time

