
Wt: a Tool for Building the New Web

White paper

Koen Deforche <koen@emweb.be>, August 2009

The evolving web
While the web was initially designed as a distributed information storage, quickly it
was reshaped to provide basic interactive functionality, through dynamic web pages.
At that time, PHP and ASP.net were created as tools for the development of such
dynamic pages.

With the gradual improvement of web technology, modern web browsers have
become capable of providing superior interactivity through the use of AJAX. AJAX is
the technology that allows updates to an already rendered web page based on
information fetched from the web server in the back-ground. As simple dynamic web
pages are evolving into complex interactive web applications, new tools are being
developed to more easily create such interactive web applications. Wt (C++) and
JWt (Java) are such new tools that take a radically new approach to designing rich
web applications.

Another factor that has equally contributed to the improved web browsing experience
today is the increased bandwidth available to most users (with ADSL, cable modems
and 3G connections offering a many-fold increase over old PSTN modems), together
with a major upgrade of capacity in the the internet back-bone. This higher
bandwidth leads to a predictable and lower average network latency. Indeed, one
can achieve a round-trip time < 130ms consistently for cross-Atlantic connections,
and thus high performance web applications may offer an interactive experience that
comes close to a native desktop application. Nowadays, slow web applications are
caused by slow servers, rather than a slow network.

Challenges for complex web applications
Modern browsers have the technology to render applications that provide a highly
interactive user experience. But this remains largely untapped because the
development of such applications is complex and time consuming using the
traditional tools such as PHP or ASP.Net, which were not designed with these uses
in mind.

These traditional tools have problems addressing the complexity related to
interactive web applications for several reasons, including performance, security,
accessibility and the new trend of combining applications from different publishers in
a single web page (Facebook apps, Google map or calendar widgets, ...).

Pages, sessions and performance
HTTP is a stateless protocol, and every request is in principle unrelated to any other
request. To serve a coherent experience to a user, sessions were introduced which
typically identify and track a user that has logged in, and is used to offer personalized
pages.

emweb bvba • Technologielaan 9 • 3001 Heverlee • Belgium • 0895.941.983 RPR Leuven
Tel: +32 16 40 40 05 • Fax: +32 16 40 40 07 • info@emweb.be • sales@emweb.be • www.emweb.be

mailto:koen@emweb.be

The traditional tools are page oriented and the contents of each page is recomposed
for every request, with the session information only used to keep track of the user.
Contrary to what is often argued, this leads to bottle necks in the back office not only
because the page and any logic that relates to it (such as access control) is
recomputed, but also because all relevant data must be fetched again. In contrast
with the 130ms cross Atlantic round-trip latency, this processing in slow scripting
languages may easily take more than a second of processing time and back-end
load, providing a sluggish web experience.

Extensions to these page based frameworks, such as partlets in Ruby on Rails or
update panels in ASP.net allow to provide partial updates using AJAX in a
rudimentary way, which breaks accessibility (for search engine robots and older
browsers), and still requires that for every request, all information relevant for the
user session (such as access control) is recomputed.

Security
Security is not to be taken lightly on the Internet. Stories about security breaches
make frequent headlines (as recently as the credit card theft of 170 million on-line
accounts, now in the news). Cross-Site Scripting (XSS) and SQL Injection are the
most frequently abused vulnerability these days. Yet, current tools such as PHP and
ASP.net offer no built-in protection and the burden for securing user input and output
lies entirely with the developer. Dynamic scripting languages such as PHP have the
additional disadvantage that user input can become interpreted as a PHP statement.

Not only XSS attacks are a threat, but for proper authentication, each request must
be validated to determine whether the user is authenticated to execute the
associated action or access the returned information. Again, traditional tools offer few
automated procedures to secure applications and the developer is responsible for
determining this by implementing the proper checks for each request. Because of
Cross Site Request Forgery (CSRF) threats, cookies cannot be solely relied on for
authenticating a user, and only a form of URL rewriting can be used, but this is rarely
done in practice because it is tedious to implement.

Since security is usually an invisible part of the deployed web application, it is often
sacrificed under time pressure at worst and simply labor intensive and tedious to
implement and test at best.

Accessibility
Since web technology evolved and continues to evolve with small steps, all web
browsers support a different part of the standards, and do so in slightly different
ways. To make an application accessible to the broadest audience possible,
traditional approaches require a choice to be made between accessibility, which
means supporting only the common denominator, and interactivity. A highly
interactive website that relies heavily on AJAX or other newer techniques will not be
accessible for those who do not have browser support for it.

An important type of “browsers” without JavaScript/AJAX support are search engine
robots. These need to navigate your web site to index its contents.

For some applications search engine optimization is not important (e.g. an on-line
mail application does not have any public contents), and thus these will more easily
take advantage of AJAX features. But for most websites, including community
websites with public profiles, the trade-off usually favors accessibility instead of
interactivity.

Social applications
The web is not only becoming a platform for web applications, but also becoming a
place with web operating systems where multiple applications may run

Page 2 of 4

simultaneously on a single page, interacting with each other.

The most visible examples of this trend are Facebook and OpenSocial applications:
a 3rd party application may integrate within a community website and interact with
social information as if it were a native part of the web site. This requires a
fundamentally new approach to a web application since the application runs not as a
single page, but integrates in another page, using only JavaScript. This differs so
much from traditional page-based web applications, that there is in practice little
opportunity for sharing of code between both types, while the functionality may in
many cases be the same.

How Wt addresses the new needs for web applications
Wt has been designed to bring the desktop programming model to web application
development, and at the same time address challenges for modern web applications.
Rather than structuring an application as a sequence of pages, a Wt web application
runs within a single page, and updates its contents based on user actions.

Unlike page-based frameworks, session information is stored in memory in the
application server throughout the session life time. This is used to improve server
processing load and application interactivity and to eliminate common security
problems.

Whereas PHP was (and still is) a successful tool for developing dynamic web sites,
Wt has been designed to simplify the development of maintainable, interactive,
secure and accessible web applications.

Interactivity
When accessed with a modern browser, a Wt web application will automatically
optimize rendering for best interactivity and use AJAX for all event handling,
returning only to the browser that information needed to update the page based on
an event.

When handling an event, after establishing its validity (for security reasons, see
below), the application immediately jumps to the functionality that responds to the
event within the same context as where it was when it last updated the display. In
this way, the application server only performs the minimum amount of work needed,
and because of the session state that is available to it, it may take advantage of any
relevant state for the user that was previously computed. This causes Wt
applications to be highly interactive, have a pleasant user experience (in which the
network latency is typically the highest factor), and generate a server and back-end
load that is 10 to 100 fold lower than traditional script based solutions (like PHP,
Ruby, ...).

The implementation of Wt has been optimized for performance, and web applications
are well usable even when deployed on low-power ARM devices (180MHz) with
limited caches.

Security
Wt uses its session state and knowledge of the user interface to protect the
application automatically against many vulnerabilities:

• XSS is mitigated by only allowing Wt itself to generate JavaScript, but not
content added by the user. This content is always filtered against malicious
tags, while preserving normal XHTML formatting. This built-in protection could
not be built into PHP because at any point in the page PHP needs to allow the
insertion of JavaScript statements.

• CSRF is mitigated by not relying on cookies for session authentication (while
cookies may still be used to preserve login information across sessions). This

Page 3 of 4

does not lead to ugly URLs since the application stays within the same page,
and only changes the named anchor part of the URL.

• Application logic is automatically verified: only requests corresponding to
events that are exposed on the current page are allowed, and any other
request is automatically blocked. In this way, a user cannot break free from
the implicit context of requests that are allowed by what he sees on his
screen.

Accessibility
While Wt is certainly not the only tool for adding AJAX capabilities to a web
application, it is the only tool that addresses accessibility problems in a transparent
way, while maximally taking advantage of AJAX (for every request!) to cut down on
communication needs and server load. Wt examines the capabilities of every client,
and adjusts its rendering strategy accordingly.

When accessed using a user agent that does not support AJAX (such as a search
engine robot), Wt will automatically revert to plain HTML post-backs for reacting to
events. This built-in graceful degradation requires no intervention from the developer
since he only states what should be updated in the user interface in response to an
event, but not how.

Within an AJAX session, Wt will keep the same page and use named anchors to
simulate browsing through internal pages (e.g. http://website.org/ # user/koen) For a
user this has the same effect since he can navigate back and forward and set
bookmarks to revisit later.

At the same time, Wt will also generate and react to the equivalent real paths
(http://website.org/user/koen), and these URLs are used by plain HTML sessions
and search engine robots.

Social applications
Since Wt makes abstraction of how a widget is rendered, a Wt application can easily
be adapted to be an OpenSocial application. Wt may be used to define a WidgetSet
mode application, which manages one or more widgets (a widget is a self-contained
building block of a page, rather than a full page) inside another page. Wt's widget set
mode uses the same kind of techniques to provide a tight integration and interaction
within the host page, as used by OpenSocial to embed applications in an
OpenSocial container.

This allows the reuse of any part of a Wt web application as an OpenSocial widget,
provided that it interacts with the OpenSocial API to retrieve user profile information.

Conclusions

• New browser capabilities, increased Internet bandwidth and lower latency
bring the potential for highly interactive web applications.

• Although frameworks originally designed for developing dynamic web sites
may in principle be used to develop such web applications, there are
performance, security and accessibility problems inherent to their design.

• To address this new scope for the web as an application platform, there is a
need for new development tools, such as Wt. When using Wt, a developer
can focus on the contents while the framework takes care of security and
accessibility, while offering a superior user experience and vastly lower server
load.

Page 4 of 4

http://busbus.be/user/koen
http://busbus.be/#user/koen
http://busbus.be/#user/koen
http://busbus.be/#user/koen

	The evolving web
	Challenges for complex web applications
	Pages, sessions and performance
	Security
	Accessibility
	Social applications

	How Wt addresses the new needs for web applications
	Interactivity
	Security
	Accessibility
	Social applications

	Conclusions

